What are Survivable Speed

 Limits for a Safe System
Approach - Some Evidence

Raphael Grzebieta (PhD)

Emeritus Professor, Transport \& Road Safety (TARS) Research Centre - UNSW
Adjunct Professor, Victorian Institute of Forensic Medicine - Monash University

Pedestrian impact

Graphic demonstration of how head injuries occur in pedestrians impacts at high speed

Old TAC advertisement encouraging drivers to slow down from $70 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ in urban streets - before we had $50 \mathrm{~km} / \mathrm{h}$ maximum limit in built up urban environments \& before Safe System Approach introduced in 2004.

Humans are a big problem - to err is human

- Human factors contribute in 90-95\% fatal crashes
- Deduction: we try to change the human problem
- We try to make them obey laws and not make mistakes
- But... humans can't be totally fixed, ... sometimes they don't want to be, so...

Humans are a big problem - to err is human

Vision Zero - An ethical approach to safety and mobility

Claes Tingvall and Narelle Haworth

Monash University Accident Research Centre

Paper presented to the 6th ITE International Conference Road Safety \& Traffic Enforcement: Beyond 2000, Melbourne, 6-7 September 1999

ABSTRACT

Vision Zero is a philosophy of road safety that eventually no one will be killed or seriously injured within the road transport system. This paper describes Vision Zero and its view that safety cannot be traded for mobility. The applicability of Vision Zero to Victoria in the short- and long-term is discussed

Rechnitzer, G., and R. H. Grzebieta. Crashworthy Systems - A Paradigm Shift in Road Safety Design.
Transport Engineering in Australia, Vol. 5, No. 2, 1999. (Also in Proc., Aus Top Tec Topical Technical Symposia, Society of Automotive Engineers Australia, Melbourne, 1999).

Grzebieta, R. H., and G. Rechnitzer. Crashworthy Systems - A Paradigm Shift in Road Safety Design (Part II). Transport Engineering in Australia, Vol. 7, No. 1-2, 2001.

March 2002

Designs for death

Safe System principles

Focus on Biomechanics Criterion instead of cost benefit

OECD \& International Transport Forum (ITF)
International Working Group Members (25 countries) chaired by Eric Howard -ex head of road safety at VicRoads

TOWARDS ZERO - Ambitious Road Safety Targets and the Safe System Approach (Sept 2008)

Eric Howard, Implementing a "Safe System" approach to road safety in Victoria, Proc. Road Safety Research, Policing and Education Conference, 2004.

Safe System principles (adopted in 2004)

- Important to recognise humans make errors
- Assess consequences of those errors
- Propose countermeasures: roads more forgiving of errors
- Countermeasures reduces crash severity to survivable limits and/or eliminate or compensates for the human error
- shift responsibility from emphasis on road users being responsible for behaviour on the road to a greater responsibility for road system designers and managers to build safe guards into the system to prevent injury-causing crashes
- No more trading off lives for benefit of mobility and cost efficiency - more humanistic ethical approach

Making crashes survivable - Safe System Approach

Source: Wramborg, P. (2005). A New Approach to a Safe and Sustainable Road Structure and Street Design for Urban Areas. Paper presented at Road Safety on Four Continents Conference, Warsaw Poland. http://www.internationaltransportforum.org/jtrc/safety/targets/08TargetsSummary.pdf

Pedestrian Impact Velocity by MAIS

MAIS = Maximum Abbreviated Injury Scale

All body regions

Head Injuries

Leg Injuries

Mizuno, Y. 2005. Summary of IHRA pedestrian safety WG activities (2005) - proposed test methods to evaluate pedestrian protection afforded by passenger cars, in 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 6-9 June 2005, Washington, DC, US, 1-15.

Pedestrian Impact Velocity by MAIS

MAIS $=$ Maximum Abbreviated Injury Scale

European Citizen's Initiative "30kmh - making streets liveable!"

Home | Why $30 \mathrm{~km} / \mathrm{h}(20 \mathrm{mph})$? | The Initiative | Take Action | Donate | Contact

(c) Less biased data or adjusted for bias: 1990s and 2000s

What is a survivable impact?

Being struck by a car at $50 \mathrm{~km} / \mathrm{h}$ as a pedestrian is the same speed reached by jumping out
K the window of a 3 story window
\therefore

Accident Analysis and Prevention

```
journal homepage: www.elsevier.com/locate/aap
```

The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and metaanalysis

Qinaat Hussain ${ }^{\text {a,b,* }}$, Hanqin Feng ${ }^{\text {c }}$, Raphael Grzebieta ${ }^{\text {d }}$, Tom Brijs ${ }^{\text {b }}$, Jake Olivier ${ }^{\text {c }}$
${ }^{\text {a }}$ Qatar University - Qatar Transportation and Traffic Safety Center, College of Engineering, P.O. Box 2713, Doha, Qatar
${ }^{\mathrm{b}}$ Uhasselt, Transportation Research Institute (IMOB), Agoralaan, 3590, Diepenbeek, Belgium
${ }^{\text {c }}$ School of Mathematics and Statistics, UNSW, Sydney, NSW, 2052, Australia
${ }^{\mathrm{d}}$ Transport and Road Safety (TARS) Research Centre, UNSW, 1st Floor West Wing, Old Main Building (K15), Sydney, NSW, 2052, Australia

Fig. 1. PRISMA flow diagram of included studies.

Results suggest an impact speed of $\mathbf{3 0} \mathbf{~ k m} / \mathrm{h}$ has on average a risk of a fatality of around $\mathbf{5 \%}$. The risk increases to $\mathbf{1 3 \%}$ for an impact speed of 40 km/h and $\mathbf{2 9 \%}$ at $50 \mathrm{~km} / \mathrm{h}$.

SAFE SYSTEM APPROACH - human factors

Pedestrian impact at night

Glancing blow head strike where glass star pattern observed \& mirror is broken

SAFE SYSTEM APPROACH - human factors

Pedestrian impact at night

Skid marks left.
Possible to determine impact speed using 'Speed from Skid' equation and adopting commonly accepted perception reaction time of driver

Pedestrian impact at night

Police wanted to charge

 driver for speeding \& reckless drivingDriver was 0.02 BAC (below 0.05 BAC limit)

Was it the driver's fault?

Visibility and lighting

Car headlights on low beam

Speed from skid equation

$$
V^{2}=2 a d
$$

$$
\begin{aligned}
& V=\text { vehicle velocity } \\
& a=\text { deceleration } \\
& d=\text { length of skid }
\end{aligned}
$$

Crash reconstruction

Speed from skid

Crash reconstruction

Perception reaction time

From around 1.0 second to up to 2.5 seconds depending on the experience and alertness of the driver but commonly adopt 1.5 seconds

- detect the presence of the pedestrian
- identify that the pedestrian represents a hazard
- decide action to be taken
- react or respond by taking action (e.g. apply brakes)

Crash reconstruction

Perception + Reaction + Braking

 0.5 to 2 seconds

BRAKING

Visibility and lighting

At 36 meters away from crossing pedestrian using low beam lights

Visibility and lighting

At 36 meters away from crossing pedestrian using high beam lights

Visibility and lighting

At 20 meters away from crossing pedestrian using low beam lights

Visibility and lighting

At 14 meters away from crossing pedestrian using low beam lights

Crash reconstruction

Is it possible to brake in time?

Assuming 1.5 seconds PRT and speed of $50 \mathrm{~km} / \mathrm{h}$
Car traveling at around $14 \mathrm{~m} / \mathrm{sec}$
In 1.5 seconds travels around 21 metres
Not possible to perceive and react in time!
IMPACT AT 50 km/h = Jumping out top window of 3 story building
(Assuming 1 second $P-R$ - impact speed is around $40 \mathrm{~km} / \mathrm{h}$) Jumping out top floor window of 2 story house

Crash reconstruction

Is it possible to brake in time?

Assuming 1.5 seconds $\mathrm{P}-\mathrm{R}$ and speed of $40 \mathrm{~km} / \mathrm{h}$
Car traveling at around $11 \mathrm{~m} / \mathrm{sec}$
In 1.5 seconds travels around 17 metres (at 20 m visible)
Car will brake for 3 metres (needs around 10 metres to stop) and will strike pedestrian at around $33 \mathrm{~km} / \mathrm{h}$

IMPACT AT $33 \mathrm{~km} / \mathrm{h}=$ Jumping off a house roof
(Assuming 1 second $\mathrm{P}-\mathrm{R}$ - impact speed is $17 \mathrm{~km} / \mathrm{h}$)

Crash reconstruction

Is it possible to brake in time?

Assuming 1.5 seconds P-R and speed of $\mathbf{3 0} \mathbf{~ k m} / \mathbf{h}$
Car traveling at around $8.3 \mathrm{~m} / \mathrm{sec}$
In 1.5 seconds travels around 12.5 metres (at 20 m visible)
Car needs around 6 metres to stop

NO IMPACT!

Summarising

Do we blame the pedestrian?
The driver was likely travelling at the speed limit.
The driver did exceptionally well perceiving and reacting to the pedestrian within 1 second despite being 0.02 BAC.

Do we blame the pedestrian?
Not really as the pedestrian was mentally handicapped.
INFRASTRUCTURE - POOR LIGHTING
SPEED LIMIT IS TOO HIGH FOR ROAD CONDITIONS
SAFE SYSTEM APPROACH $=30 \mathrm{~km} / \mathrm{h}$ ($40 \mathrm{~km} / \mathrm{h}$ maybe acceptable)
Safe System thinking essential to reduce trauma

Pedestrians must be visible at night if you want to maintain $50 \mathrm{~km} / \mathrm{h}$ speed limit Otherwise set to $30 \mathrm{~km} / \mathrm{h}$ (or $40 \mathrm{~km} / \mathrm{h}$)

Latvia's default speed limit for a

 Safe System to reduce pedestrian trauma

Default

Selected places

Making crashes survivable - Safe System Approach

Systematic Review?

Source: Wramborg, P. (2005). A New Approach to a Safe and Sustainable Road Structure and Street Design for Urban Areas. Paper presented at Road Safety on Four Continents Conference, Warsaw Poland. http://www.internationaltransportforum.org/jtrc/safety/targets/08TargetsSummary.pdf

What is a survivable crash?

Make crashes survivable - intrinsic safety

Frontal Crashes - head on + run-off-the road into hard object (tree, pole, abutment)

What is a survivable impact? Motor vehicles

At $60 \mathrm{~km} / \mathrm{h}$, driving off roof of 3 story building

At $80 \mathrm{~km} / \mathrm{h}$, driving off roof of 6 story building

At $100 \mathrm{~km} / \mathrm{h}$, driving off roof of 10 storey building

High risk of fatality at speeds >80 km/h

What is a survivable impact?
Motor vehicles - $\mathbf{6 0}$ km/h vs $\mathbf{1 0 0}$ km/h

Princess Diana crash

 31 August 1997

Australia - Speed limit $100 \mathrm{~km} / \mathrm{h}$

Should be 80 km/h

Crash into tree not survivable at this speed

Australia - Speed limit $100 \mathrm{~km} / \mathrm{h}$
Head-on crashes not survivable at this speed

Wire-rope median barrier

vz VICTORIAN INSTITUTE
OF FORENSIC MEDICINE

Wire-rope barrier installation

- NZ Centenial Highway

-1996 to 2000: 8 fatalities, 2 serious injury and 7 minor

- 2001 to 2004 removed passing lanes \& wide yellow double tactile lines \& reflectors \& signs: 4 fatalities 2 serious injuries 2 minor injuries
- 2005 to 2009 installed wire-rope median barriers and dropped speed limit to 80 km/h: No fatalities, No serious injuries, 3 minor injuries.

New Zealand

Centennial Highway - actual incident

Source: Fabian Marsh, New Zealand Transport Agency, Wellington

Intersection crashes

What is a survivable impact? Intersection crashes

4 fatalities and 3 serious injuries over a three-year period.

Approach speed is $70 \mathrm{~km} / \mathrm{h}$ from both directions much too high

Crash types: Side impact crash

Crash types: Side impact crash

 Post crash damage

Common T bone intersection crash

US deformable barrier Test = $50 \mathrm{~km} / \mathrm{h}$

Euro NCAP deformable barrier Test less severe (lower barrier height \& lower impact speed \& perpendicular) $=32 \mathrm{~km} / \mathrm{h}$

US Insurance Institute for Highway Safety

Common T bone intersection crash

US deformable barrier Test = $50 \mathrm{~km} / \mathrm{h}$

Euro NCAP deformable barrier Test less severe (lower barrier height \& lower impact speed \& perpendicular) $=32 \mathrm{~km} / \mathrm{h}$

US Insurance Institute for Highway Safety

How head injuries occur in crashes

Side Impact pole crash - with side airbag

Euro NCAP
Pole Test
$=32 \mathrm{~km} / \mathrm{h}$

How head injuries occur in crashes

 Side Impact pole crash - with side airbag

How head injuries occur in crashes

Side Impact pole crash - with side airbag

Euro NCAP
Pole Test
$=32 \mathrm{~km} / \mathrm{h}$
Camera View-06

Frame \#
-38

Time
-0.0380

Roundabout - naturally controls speed and directional impact forces at intersections reducing T-bone impact severity (Aus)

Roundabout - forces drivers to reduce their speed to around $50 \mathrm{~km} / \mathrm{h}$ safe system impact speed

Roundabout coutermeasure

Reduction in collisions

[^0]VICTORIAN INSTITUTE OF FORENSIC MEDICINE

Questions?

[^0]: Source: Federal Hiahwav Administration and Insurance Institute for Hiahwav Satetv (FHWA and IHS)

