

<u>Vidas Žuraulis</u>, Vytenis Surblys,

Department of Automobile Engineering

ASSESSMENT OF RISKY CORNERING ON HORIZONTAL ROAD CURVE BY IMPROVING VEHICLE SUSPENSION PERFORMANCE

IN THE BALTIC SEA REGION 2020 2-3 DECEMBER, RIGA

VISION ZERO FOR SUSTAINABLE ROAD SAFETY **Road users** The scope **Road** and **Vehicle** environment WHO 2006 Muhlrad and Lassarre 2005 1.35 mln. road traffic deaths 1.48 mln. COVID-19 deaths **Desired output** Undesired outputs **Mobility** Road Other traffic consequences crashes of transport The potential... The attention and efforts worldwide... The reaction from institutions and society... 4-13% Work School Vehicle Human factors factors Leisure Shopping Road and environmental Others factors 4-35%

ASSESSMENT OF RISKY CORNERING ON HORIZONTAL ROAD CURVE BY IMPROVING Vidas ŽURAULIS, Vytenis SURBLYS **VEHICLE SUSPENSION PERFORMANCE**

Driving Risk on Horizontal Road Curves

some numbers...

Horizontal curves related numbers	Location	Scope	Source, years	
25% - 30%	-	Part of all road fatalities	Lamm et al. 1999	
30%	Australia	Part of crashes occur on road curves	Shields et al. 2001	
87%		Run-off-road and head-on crashes (part of all fatal crashes at horizontal curves)		
76%	U.S.	Single vehicle crashes in which the vehicle left the road and hit a fixed object or overturned (part of all fatal crashes at horizontal curves)	Torbic et al. 2004	
1.5 - 4	-	times greater accident rate than on straight sections	Aram 2010	
21%	North Carolina	Part of reported collisions on curves on two-lane roads (2003 – 2005)	Hummer et al. 2010	
14%	North Carolina	Part of reported collisions on curves on all roads (2003 – 2005)		
63.44%	Queensland,	Part of fatalities	Oursenaland Transmort 2000	
25.17%	Australia	Part of required hospitalisation	Queensiand Transport, 2006	
40%	West Europe	Part of run-off-road crashes when single vehicles are involved	SafetyNet 2010	
10%	F	Part of single-vehicle or run-off-road accidents	ERA-NET ROAD 2012	
45%	Europe	Part of single-vehicle or run-off-road considering only fatal accidents		
25%	U.S.	Part of all fatal crashes occur on horizontal road curves	Federal Highway Administration 2014	

Driving Risk on Horizontal Road Curves

some numbers...

Horizontal curves related numbers	Location	Notes	Source, years	
13%	Spain	Part of all road fatalities	Dirección General de Tráfico 2015	
35%	Croatia	Part of total accidents with fatalities occurred along horizontal curves	Maljković and Cvitanić 2016	
22.6%	Czech Republic	Part of all horizontal road curves with at least one road accident	Bíl et al. 2019	
13%	Lithuania	Part of all fatal road accidents (2015-2019)	Lithuanian Road Police 2020	
39%	Australia	Part of fatality crashes (between 1 July 2008 and 30 June 2009)	Rakotonirainy et al. 2015	
22%	-	Road departure crashes without loss of control	Mastinu and Ploechl 2014	
42%	U.S.	Lane departure crashes occurred at horizontal curves	The American Association of State Highway and Transportation Officials, 2008	
71%	Norwow	Speeding and driving under the influence of alcohol (The proportion of crashes that occurred in curves single- vehicle crashes)	Нøуе 2020	
46%	NOTWAY	Speeding and driving under the influence of alcohol (The proportion of crashes that occurred in curves among other crashes)		
60% - 70%	-	Single vehicle run-off-the-road accidents of all fatal crashes	Calvi 2015	
23.1%	-	Extremely severe crashes occurred on the downgrade horizontal curve segments	Xu et al. 2020	

ГЕСН

VISION ZERO FOR SUSTAINABLE ROAD SAFETY IN THE BALTIC SEA REGION 2020 2-3 DECEMBER, RIGA

Driving Risk on Horizontal Road Curves some figures...

"Our inability to sense danger in kinetic energy."

2.000

Radius (m)

"Our fear of falling makes the danger in kinetic energy obvious."

Prof. Claes Tingvall, Swedish National Road Administration

RIGA TECHNICAL UNIVERSITY

ГЕСН

VISION ZERO FOR SUSTAINABLE ROAD SAFETY IN THE BALTIC SEA REGION 2020 2-3 DECEMBER, RIGA

400 500 600 800 1000

Driving Risk on Horizontal Road Curves some figures...

VEHICLE SUSPENSION PERFORMANCE Vida

Vidas ŽURAULIS, Vytenis SURBLYS

Driving Risk on Horizontal Road Curves

ROAD INFRASTRUCTURE SAFETY MANAGEMENT (2008/96/EC)

Mandatory principles for *safe road* design and building

The importance of *maintenance* and renewal

Risk Reduction Perspectives

The importance of *maintenance* and renewal

VILNIUS TECH

Risk Reduction Perspectives

The importance of *maintenance* and renewal

Risk Reduction – Vehicle Perspective

Risk Reduction – Vehicle Perspective Simulation

- 14 DOF vehicle model (MATLAB/Simulink)
- Sharp cornering maneuver:

VILNIUS

'ECH

- wheels steered $\delta = 1.28$ deg.
- trajectory $R_{\text{kin.}}$ =117 m, $R_{\text{dyn.}}$ =70÷110 m
- superelevation e = 4%, max. friction $\mu_{max} = 0.85$
- driving speed during cornering $v = 75 \div 95$ km/h
- lateral acceleration $a_v = \frac{6 \div 8 \text{ m/s}^2}{1000 \text{ m/s}^2}$
- body side-slip angle $\delta = 5 \div 14 \text{ deg.}$

(Žuraulis et al. 2013)

VIL NIUS

ECH

VISION ZERO FOR SUSTAINABLE ROAD SAFETY IN THE BALTIC SEA REGION 2020 2-3 DECEMBER, RIGA

Sharp cornering maneuver:

14 DOF vehicle model (MATLAB/Simulink)

wheels steered δ =1.28 deg.

Risk Reduction – Vehicle Perspective Simulation

trajectory $R_{\text{kin.}}$ =117 m, $R_{\text{dyn.}}$ =70÷110 m 2000 superelevation e = 4%, max. friction $\mu_{max} = 0.85$ Damping force, N 1000 driving speed during cornering $v = 75 \div 95$ km/h lateral acceleration $a_v = 6 \div 8 \text{ m/s}^2$ body side-slip angle δ =5÷14 deg. -0.2 0.2 0.4 -04 06 0.8 Dan per velocity, m/s *B* class roughness for left side wheels (inside) D class roughness for left side wheels (outside corner) 0.015 Left track Elevation-left Elevation-righ Right trac Pavement elevation, m A class 0.01 B class C class m³/cycl D class 0.005 E class 10 PSD, Ζ m, IElevation -0.005 -0.01 IRI (left) =1.21 m/km IRI (right) =6.74 m/km -0.015 50 150 200 250 × 100 300 10⁻¹ 10^{2} Road distance, m Spatial frequency, cycles/m

Sharp cornering maneuver

14 DOF vehicle model (MATLAB/Simulink)

Risk Reduction – Vehicle Perspective

• Simulation

• Results

Sharp cornering maneuver

14 DOF vehicle model (MATLAB/Simulink)

Risk Reduction – Vehicle Perspective

- Simulation
 - Results

Suspension damping mode	RMS of suspension deflection velocity, m/s				Dynamic Load Coefficient (DLC)			
	Left side		Right side		Left side		Right side	
	Front	Rear	Front	Rear	Front	Rear	Front	Rear
Soft	0.0566	0.0566	0.2852	0.2846	0.042	0.062	0.203	0.252
Normal	0.0479	0.0476	0.2179	0.2178	0.041	0.061	0.180	0.225
Stiff	0.0412	0.0411	0.1622	0.1602	0.042	0.067	0.173	0.216

Sharp cornering maneuver

14 DOF vehicle model (MATLAB/Simulink)

Risk Reduction – Vehicle Perspective

- Simulation
- Results

Suspension damping mode	RMS of suspension deflection velocity, m/s				Dynamic Load Coefficient (DLC)			
	Left side		Right side		Left side		Right side	
	Front	Rear	Front	Rear	Front	Rear	Front	Rear
Soft	0.0566	0.0566	0.2852	0.2846	0.042	0.062	0.203	0.252
Normal	0.0479	0.0476	0.2179	0.2178	0.041	0.061	0.180	0.225
Stiff	0.0412	0.0411	0.1622	0.1602	0.042	0.067	0.173	0.216

ASSESSMENT OF RISKY CORNERING ON HORIZONTAL ROAD CURVE BY IMPROVING VEHICLE SUSPENSION PERFORMANCE <u>Vidas ŽURAULIS</u>, Vytenis SURBLYS 0.5 m

Conclusions

- Deterioration of the road surface at the edge of the road is a common case of pavement damage. Driving on such a pavement, different wheels have a variation in its contact with the road surface, which can be reduced by lower driving speed or active chassis systems.
- Suspension with higher damping force characteristic
 (*Stiff damping*) showed better vehicle stability results,
 despite the fact that the performance of vehicle
 dynamics is strongly non-linear and depends on
 combination of suspension stiffness-damping as well as
 tire-road interaction.
- Better tire-road interaction working on Stiff damping mode was estimated with lower Dynamic Load
 Coefficient values. The deviation from the driving trajectories utilising different suspension damping modes was from 0.2 to 0.5 m.
- Road-adjusted suspension decreases wheels contact loss, vehicle's outward displacement, and risk of possible accident.

Thank you

Stay safe and healthy

